Table of Contents

1 Message from the General Manager
2 Board of Trustees
4 Central Utah Gardens
6 Environmental Program
8 June Sucker Recovery Implementation Program
10 Utah Lake System
12 Treatment Plant Operations
14 Water Quality
16 Central Water Project
18 Olmsted Hydropower Plant
20 Jordanelle Hydropower Plant
22 Winter Snowpack
23 Spring Runoff
24 Water Deliveries
26 CUP Operations
Message from the General Manager

Gene Shawcroft, P.E.
General Manager/CEO of Central Utah Water Conservancy District

With the celebration of the first 50 years of Central Utah Water Conservancy District’s (CUWCD) history behind us, our task is to prepare for the next 50 years with the vision and tenacity that provided the robust water systems we enjoy today.

In anticipation of Utah’s population doubling over the next 50 years, Utah’s four, major, water conservancy districts organized Prepare 2060 to better coordinate the myriad water issues accompanying that growth. This initiative, commonly called Prep60, provides a consistent direction to decision makers on state-wide water issues.

With over 60% of the state’s population within CUWCD area, our role is key in meeting these future challenges. Among many other things, our immediate focus is:

• To design, and complete the remaining Utah Lake System from Spanish Fork to Mona. In this effort, CUWCD continues to work with Utah’s federal delegation, with the Department of the Interior, and other Federal officials to procure infrastructure funding.

• To procure, preserve, and protect CUWCD’s water supply through completing the reconstruction of the Olmsted Power Plant at the mouth of Provo Canyon, the drilling of additional wells for the Central Water Project, and planning other new and innovative water conservation and development projects.

• To meet threatened and endangered species recovery goals including the ongoing effort to down-list and/or delist the endangered June sucker and other species in cooperation with the federal Fish and Wildlife Service and the Utah Division of Wildlife Resources.

• To operate and maintain a multi-billion-dollar network of raw water and finished water facilities for the current and growing Utah population. Included in this endeavor is a comprehensive asset management and replacement program with an innovative, Trustee-authorized, funding plan.

I am ever more grateful for an insightful and very capable Board of Trustees, and professional and dedicated staff, that accept the challenge to excel year by year as we continue to chart a course to provide a clean, safe, and affordable water supply for generations to come.
Board of Trustees

CUWCD is governed by a board of Trustees representing eight Utah Counties. The Board of Trustees provides a check and balance between rural and urban representation. The appointed citizen board governs the affairs of CUWCD and establishes policy.

JURISDICTION BY COUNTY

Duchesne
JR Bird
Kirk L Christensen
Shelley Brennan

Juab
Byron Woodland

Salt Lake
Jim Bradley
Tom Dolan
Aimee Newton
Al Mansell

Sanpete
Steve Frischnecht

Uintah
N Gawain Snow
Boyd Workman
Michael J Mckee

Utah
G Wayne Anderson
Randy A Brailsford
Larry Ellertson

Wasatch/Summit
Michael K Davis
Greg McPhie
Top (Left to Right): Jim Bradley, Tom Dolan, N Gawain Snow, Larry Ellertson, Randy A Brailsford, Kirk L Christensen, Greg McPhie
Middle: Al Mansell, Steve Frischnecht, JR Bird, Boyd Workman, Michael J McKee, Michael K Davis
Front: Byron Woodland, Aimee Newton, G Wayne Anderson, Shelly Brennan
Central Utah Water Conservancy District created the Gardens to support its commitment to conservation, and to encourage an ethic that promotes responsible management of our water resources within the community.

The Central Utah Gardens celebrated another record-breaking attendance of 8,478 in the 2016 calendar year. Eleven Garden classes were held in the late winter/early spring months with topics on Cottage Gardens, Yard Design, and Vegetable Gardening. During the summer months, the Gardens hosted four kids classes with an average attendance of 94.

Throughout the year, the Central Utah Gardens gave tours to various groups including elementary students, high school groups, college classes, cub scouts, girl scouts, senior centers, youth groups, and garden clubs.

USU held a 4-H day camp in July in which 56 Students attended. In addition to the summer concerts and classes, the Gardens also hosted a magician event with 235 in attendance, and a Comedy Night with 213 in attendance.
In 2016, over 4,400 smart irrigation controller rebates were paid out. In addition, other conservation outreach efforts were extended to over 1,400 people. Events and groups included the Sanpete County Education Day, the Utah Lake 4th Grade Field Trip and to groups like the Master Gardeners and Vineyard residents.

Central Utah Gardens hosted their Annual Water Festival in May to celebrate water. With 312 in attendance, the festival focused on informing the public about water conservation through different activities, demonstrations, and a Safety Fair. To top it off, the festival grabbed the attention of its participants with a Super Hero Theme!

The Annual Pumpkin Walk, hosted in October, had a successful turnout of 1,936 visitors. The visitors participated in family activities and were able to view the entries of the Pumpkin Carving Contests!

A highlight of the summer at the Gardens are the concerts. This year the Gardens hosted six different concerts with a total attendance of 1,039. In addition to the great performances, each concert included a water conservation message.
Environmental Programs

DIAMOND FORK RIVER & SIXTH WATER CREEK FLOW STUDY

In 2015, CUWCD along with the Utah Reclamation Mitigation and Conservation Commission (URMCC) and the Department of the Interior (DOI) Central Utah Project Completion Act (CUPCA) Office, initiated a multi-year, instream-flow study on Diamond Fork River and Sixth Water Creek to determine the optimal flow regime. During the first year of the study, the USU research team was able to collect data that included:

• Continuous water temperature and dissolved oxygen data at nine sample sites in April, June, and August.
• Substrate, food base, metabolism, macroinvertebrate, and fish community data at the nine sample sites.
• Sediment transport data in April and August.
• Inspected sediment sources and storage areas in May.
• Surveyed trout spawning sites in July.
WARREN ACT EA

Our environmental team began the Environmental Assessment (EA) process to analyze the impacts of storing up to 11,700 acre-feet of non-project water in Jordanelle Reservoir. In order to allow non-project water to be stored in a federal facility, a Warren Act contract must be executed. The EA is part of the required process for this proposed federal action, and is currently out for public review and input. A decision document is expected in 2017.

CONTINUATION OF CULTURAL RESOURCE MONITORING FOR THE OLMS TED HYDROELECTRIC POWER PLANT REPLACEMENT PROJECT

Excavation preparatory to the construction of the New Olmsted Hydroelectric Power Plant began in October. A culture resource specialist was onsite to document daily finds. Some of the most interesting finds so far have been sections of light-gauge, historic railroad tracks, possibly from a track system used to haul the penstocks into place, a metal plate with railroad spikes, and a hand-hammered, steel rod with a loop at the top.
June Sucker Recovery Implementation Program

The June Sucker Recovery Implementation Program (JSRIP) continued to implement a variety of projects in 2016 to recover the June sucker. Projects included:

• Restoring a mile-long reach of Hobble Creek on the west side of Springville to create spawning habitat for June sucker and improve stream function.

• Continuing the removal of common carp from Utah Lake by removing over three million pounds in 2016. This brings the total removed as part of this project to approximately 24 million pounds.

• Completing a research project on the survival of captive, reared June sucker stocked into Utah Lake. This study provides information necessary to evaluate and develop future stocking goals. Through 2016, over 700,000 individual June sucker have been stocked into Utah Lake.

• Conducting research on the potential impact of the illegally-introduced northern pike population on the recovery of June sucker.
The June sucker has been federally listed as endangered since 1986. Through the efforts of the JSRIP, the species has made considerable progress towards recovery by addressing threats to the species survival through a variety of projects. These projects have stopped population declines and allowed the June sucker population to significantly increase.
Utah Lake System

The Utah Lake System (ULS) conveys water from Strawberry Reservoir in the Colorado River Basin, via the Diamond Fork System, to municipal water users in the Great Basin along the Wasatch Front in Salt Lake and Utah counties. The Utah Lake System also provides supplemental flows to streams for environmental purposes.

Half of the ULS municipal water supply, 30,000 acre-feet, is contracted to two water agencies in Salt Lake County: Jordan Valley Water Conservancy District and Metropolitan Water District of Salt Lake and Sandy. The water for these entities will be delivered to existing aqueducts at the mouth of Provo Canyon that flow to water treatment plants in Salt Lake County. The remaining 30,000 acre-feet of ULS municipal water is contracted to the South Utah Valley Municipal Water Association (SUVMWA), which is comprised of ten cities in south Utah County.

In October 2015, a construction contract was awarded for Orem Reach 2, which includes approximately a quarter mile of 60-inch, welded-steel pipeline, that will convey water, via the to-be-reconstructed Olmsted power plant, penstock, and tunnel, to the Alpine/Jordan Aqueduct for delivery to water agencies in Salt Lake County. Construction of the Orem Reach 2 pipeline to the Olmsted power plant site was completed in October 2016.
Final connection to the new power plant is scheduled for completion in mid-to-late 2018, which will allow delivery capability into the Alpine/Jordan Aqueduct sometime after 2018. This will allow conveyance of CUP water to Jordan Valley Water Conservancy District and Metropolitan Water District of Salt Lake and Sandy.

Work on the remaining features of the ULS includes the design and construction of the approximately 17-mile-long Spanish Fork-Santaquin Pipeline. This pipeline will have the capability to deliver CUP water to eight cities in southern Utah County. Design of the initial reach of the Spanish Fork-Santaquin Pipeline, the Spanish Fork Reach, began in early 2016.

The construction of the Spanish Fork Reach is scheduled to begin in the spring of 2017.
Biological filtration is an operational practice of encouraging bacterial growth in treatment plant filters. In 2016, a pilot study was completed which assessed the feasibility of biological filtration at DVWTP. The goal at DVWTP was to determine the best biological filters. This would be beneficial because it would improve the biostability of the water in the CUWCD’s customer agencies’ distribution systems.

The study showed that biological filtration could improve distribution system biostability. Piloting showed that biological filters could improve water quality without any negative operational effects.

Based on the piloting results, DVWTP adjusted the chlorine feed on October 4, 2016, to become the first full-scale biological drinking water treatment plant in Utah. The filters will become increasingly biological over a period of several months, and plant staff will monitor and optimize filter performance throughout the process. So far, performance has matched or exceeded the pilot scale results in all parameters. This project shows the dedication of CUWCD staff to providing the best possible drinking water to our customers.
DON A CHRISTIANSEN WATER TREATMENT PLANT
- Orem City: 16,436
- Provo City: 1,744
- CWP: 8,367
- Total: 26,547

ASHLEY VALLEY WATER TREATMENT PLANT
- AVWSID: 752
- Vernal City: 3,140
- Jensen: 0
- Total: 3,892

DUCHESNE VALLEY WATER TREATMENT PLANT
- Duchesne City: 647
- East Duchesne: 529
- Johnson Water: 630
- Myton: 149
- Duchesne County WCD: 779
- Total: 2,734
Cyanobacteria, also known as blue-green algae, can release toxins into water that can be unsafe for drinking water, agricultural, or recreational use. During the summer of 2016, there was a large cyanobacteria bloom in Utah Lake that caused the health department to close the lake to all recreational uses for several weeks. Some cities chose to suspend irrigation use as well. Fortunately, only low levels of toxins were detected despite historically-high cyanobacteria cell counts.

Cyanobacteria blooms are a natural phenomenon caused by several factors. Warm water, calm water, lack of wind, sufficient sunlight, and sufficient nutrients can all contribute to a cyanobacteria bloom, and likely all contributed to the summer bloom in Utah Lake.
Fortunately, the upper and middle Provo River watershed does not experience similar cyanobacteria blooms. Deer Creek, for example, does not have sufficient nutrients to support such a large bloom. Consequently, cyanobacteria cell counts remain much lower than what is sometimes observed in Utah Lake.

A driving factor to the lower nutrient levels in Deer Creek is the success of the Provo River Watershed Council (PRWC), of which the CUWCD is a member. For the last 35 years, the PRWC has been working with land owners, as well as public and private entities, to create nutrient barriers. For example, PRWC is involved in river restoration projects, has encouraged municipalities to eliminate municipal phosphorus discharges, and has helped to implement agricultural best practices. The PRWC has a strong commitment to water quality and will continue to monitor and manage the watershed in order to protect public health.
The Central Water Project (CWP) has completed the majority of necessary infrastructure installation for water deliveries and is now in full operations. Potable water deliveries of 7,785 acre-feet of contract water, and 400 acre-feet of temporary water, marked the greatest amount of CWP water delivered to date.

The project currently includes over 23 miles of pipelines, a 10-million gallon reservoir, a pump station, seven turnouts with connections to six customers, two completed wells with one well house under construction, and two additional wells that will be equipped with pumps and well houses next year.

Construction of chlorination facilities in Vineyard and Saratoga Springs were completed. These facilities will help ensure the continued delivery of high-quality, reliable, drinking water to northern Utah County and southern Salt Lake County for many years.
Water from CWP Well #12 received the “Best of Show” award at the AWWA (American Water Works Association) Intermountain Section annual conference as the best tasting water in the state. Water from Well #12 is eligible to compete at the national AWWA conference in 2017. This makes two years in a row that a well from the CWP system has won the “Best of Show” award for the AWWA Intermountain Section.

2016 Central Water Project Operations

#### Customer Agency	Water Delivered (acre-feet)
Vineyard-Town | 177
Vineyard-Town Non-CWP | 23
PacifiCorp | 908
Lehi City | 302
Saratoga Springs | 390
Eagle Mountain City | 854
Alpine School District | 11
Jordan Valley Water Conservancy District | 7,440
JVWCD Non-CWP | 1,996

Sources

- CWP Well 11 | 1,520
- CWP Well 12 | 2,272
- Don A Christiansen Regional Water Treatment Plant | 8,374
In the early 1900s, Lucien L. Nunn began construction of a new run-of-the-river hydroelectric power plant at the mouth of Provo Canyon. Water for the hydroelectric power plant was diverted from the Provo River approximately 4.5 miles up the canyon and conveyed to the plant through the Olmsted Flowline, located along the foothills of Mount Timpanogos above the Provo River. By 1912, the power plant was able to produce about 10 megawatts when operating at capacity. In 1912, Utah Power & Light (now Rocky Mountain Power, a part of PacifiCorp) purchased the Olmsted Power Plant through the acquisition of Telluride Power Company, and has operated the power plant since that time.

In 1987, the Department of the Interior secured ownership of the Olmsted Flowline and the associated water rights as part of the CUP. In the associated 1990 Settlement Agreement between Reclamation, CUWCD, and PacifiCorp, the Olmsted Hydroelectric Power Plant was added to the CUP to better secure and develop CUP Bonneville Unit water rights. That Settlement Agreement expired on September 22, 2015, and power generation at the site has ceased. The continued operation of a power plant at Olmsted is essential to maintaining the original Olmsted water rights, which are a large, critical part of the M&I water supply of the Bonneville Unit. Therefore, the District, DOI, and Reclamation have been coordinating with PacifiCorp for many years to ensure continued generation of power at this site for the long term.
In 2010, CUWCD completed a comprehensive evaluation to assess the condition of the existing power plant, penstocks, pressure box, and upstream conveyance systems to the power plant, and to determine how to best ensure that the Olmsted water rights could be maintained. It was determined that the existing facilities were well past their useful life and could not be refurbished, but had to be replaced.

The existing Olmsted power facilities included the historic power plant, several support buildings, three 48-inch and one 72-inch penstocks, the pressure box, a rock tunnel, and a 102-inch pipeline. The new facilities that will be constructed include relining of the 102-inch pipeline, lining of the rock tunnel with an 84-inch steel pipeline, a new cliff spillway structure, a new surge tank, a new 84-inch buried penstock, a new power house, and connection to the electrical grid. The historic Olmsted Power House, which is on the National Registry of Historic Places, and all equipment in the building, will not be demolished as part of this replacement project, but will remain and eventually be turned into a museum. All other property and facilities surrounding the power house are owned and maintained by PacifiCorp and will not be disturbed during construction. Construction of the new power plant is estimated to be completed by July 2018.
CUWCD and Heber Light and Power Company (HL&P) formed a partnership in 2000 to develop the Jordanelle Hydroelectric Project. This project develops non-federal power at Jordanelle Reservoir, a CUP facility operated and maintained by CUWCD. It is operated under a lease-of-power-privilege contract that CUWCD and HL&P entered into with DOI. CUWCD works closely with HL&P and DOI to make the project a continued success.

CUWCD finances, owns, and operates the power generation plant. HL&P purchases all generation output for sale to its customers, and it constructs and maintains the associated power transmission and distribution facilities.

During 2016, a gross generation of 40,533.70 MWh was achieved - about 3,000 MWh less than last year’s generation but just above the average annual long-term generation design estimate. Enough power and energy are developed by the Jordanelle Hydroelectric Project to supply the electrical energy needs of about 9,000 homes.
<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td></td>
</tr>
<tr>
<td>Output Gross</td>
<td>1,832.01</td>
<td>1,706.22</td>
<td>1,824.38</td>
<td>2,195.83</td>
<td>5,411.69</td>
<td>6,062.36</td>
<td>7,949.80</td>
<td>7,356.66</td>
<td>3,181.47</td>
<td>1,856.40</td>
<td>1,895.70</td>
<td>40,533.70</td>
<td></td>
</tr>
<tr>
<td>Output Net</td>
<td>1,786.76</td>
<td>1,663.20</td>
<td>1,778.17</td>
<td>2,133.83</td>
<td>5,137.21</td>
<td>5,754.36</td>
<td>7,459.99</td>
<td>6,916.76</td>
<td>3,061.71</td>
<td>1,806.00</td>
<td>1,843.62</td>
<td>38,831.52</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>45.25</td>
<td>43.02</td>
<td>46.21</td>
<td>62.00</td>
<td>274.48</td>
<td>308.00</td>
<td>489.81</td>
<td>119.76</td>
<td>50.40</td>
<td>52.08</td>
<td></td>
<td></td>
<td>2,096.28</td>
</tr>
</tbody>
</table>
Winter Snowpack

After a respectable, though below-average, 2015 snowpack season, the 2016 snowpack season followed with a little better promise of drought relief. Peak snowpack at the following Snotel sites, all monitored closely for District operations and informational purposes, ranged from 70% to 121% of normal.

<table>
<thead>
<tr>
<th>Snotel Site:</th>
<th>Percent of Peak Normal Value(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provo River/ Utah Lake/Jordan River</td>
<td></td>
</tr>
<tr>
<td>Trial Lake (9,992 FT)</td>
<td>102%</td>
</tr>
<tr>
<td>Snowbird (9,640 FT)</td>
<td>82%</td>
</tr>
<tr>
<td>Clear Creek #1 (8,908 FT)</td>
<td>82%</td>
</tr>
<tr>
<td>Beaver Divide (8,280 FT)</td>
<td>121%</td>
</tr>
<tr>
<td>Lookout Peak (8,200 FT)</td>
<td>98%</td>
</tr>
<tr>
<td>Timpanogos Divide (8,140 FT)</td>
<td>79%</td>
</tr>
<tr>
<td>Sevier River</td>
<td></td>
</tr>
<tr>
<td>Box Creek (9,828 FT)</td>
<td>76%</td>
</tr>
<tr>
<td>Pickle Keg (9,600 FT)</td>
<td>108%</td>
</tr>
<tr>
<td>Mammoth-Cottonwood (8,727 FT)</td>
<td>86%</td>
</tr>
<tr>
<td>Duchesne River</td>
<td></td>
</tr>
<tr>
<td>Lakefork Basin (10,966 FT)</td>
<td>97%</td>
</tr>
<tr>
<td>Brown Duck (10,600 FT)</td>
<td>90%</td>
</tr>
<tr>
<td>Chepeta (10,592 FT)</td>
<td>95%</td>
</tr>
<tr>
<td>Strawberry Divide (8,123 FT)</td>
<td>76%</td>
</tr>
<tr>
<td>Indian Canyon (9,175 FT)</td>
<td>88%</td>
</tr>
<tr>
<td>Daniels-Strawberry (8,037 FT)</td>
<td>70%</td>
</tr>
<tr>
<td>Green River</td>
<td></td>
</tr>
<tr>
<td>Trout Creek (9,518 FT)</td>
<td>101%</td>
</tr>
<tr>
<td>King’s Cabin (8,724 FT)</td>
<td>116%</td>
</tr>
</tbody>
</table>

\(^1\)This value represents the peak annual snowpack amount in percent of the peak 30-year median snowpack value for each respective Snotel site.
Spring runoff from melting snowpack was below average at all facilities, but rains in May helped preserve reservoir storage. Three major facilities, Jordanelle Reservoir, Strawberry Reservoir, and Upper Stillwater Reservoir, had respective April-through-July runoff quantities of 79%, 42%, and 96% of average, respectively. As designed, the long-term storage facilities continue to provide consistent, contract deliveries through drought periods.

<table>
<thead>
<tr>
<th>Reservoir/Water Body:</th>
<th>Filling Status at Peak Storage:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starvation Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Upper Stillwater Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Currant Creek Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Strawberry Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Big Sand Wash Reservoir(^1)</td>
<td>Filled</td>
</tr>
<tr>
<td>Trial Lake</td>
<td>Filled</td>
</tr>
<tr>
<td>Washington Lake</td>
<td>Filled</td>
</tr>
<tr>
<td>Lost Lake</td>
<td>Filled</td>
</tr>
<tr>
<td>Jordanelle Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Deer Creek Reservoir(^2)</td>
<td>Filled, 87%</td>
</tr>
<tr>
<td>Utah Lake</td>
<td>Filled, 99%</td>
</tr>
<tr>
<td>Moon Lake Water Users Association Facility(^1)</td>
<td>3.35 feet below Compromise</td>
</tr>
<tr>
<td>Provo River Water Users Association Facility(^2)</td>
<td></td>
</tr>
</tbody>
</table>
Water Deliveries

Starvation Reservoir

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUP Project Water (M&I) Uinta Basin Exchange Contracts</td>
<td>0.89</td>
</tr>
<tr>
<td>Duchesne City</td>
<td>0.27</td>
</tr>
<tr>
<td>East Duchesne Culinary Water Improvement District</td>
<td>0.10</td>
</tr>
<tr>
<td>Duchesne County Upper Country Water Improvement District</td>
<td>0.03</td>
</tr>
<tr>
<td>Johnson Water Improvement District</td>
<td>0.24</td>
</tr>
<tr>
<td>Camperworld</td>
<td>0.05</td>
</tr>
<tr>
<td>DOI Water Management Improvement Program (Section 207)</td>
<td>0.00</td>
</tr>
<tr>
<td>DOI Water Management Improvement Program (Rediverted “44,400”)</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-Project Water (M&I)</td>
<td>0.645</td>
</tr>
<tr>
<td>Duchesne City</td>
<td>0.699</td>
</tr>
<tr>
<td>Myton City</td>
<td>0.161</td>
</tr>
<tr>
<td>Duchesne County Water Conservancy District</td>
<td>0.709</td>
</tr>
<tr>
<td>East Duchesne Culinary Water Improvement District</td>
<td>0.514</td>
</tr>
<tr>
<td>CUP Project Water (Irrigation) Block Notice No. 1</td>
<td>9.360</td>
</tr>
<tr>
<td>Duchesne County Water Conservancy District (Block Notice1B)</td>
<td>0.1670</td>
</tr>
<tr>
<td>Midview Exchange</td>
<td>0.10719</td>
</tr>
<tr>
<td>CUP Project Water (Replacement) Replacement Water for Project Operations</td>
<td>0.11774</td>
</tr>
</tbody>
</table>

Big Sand Wash Reservoir

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUP Project Water (M&I)</td>
<td>1.024</td>
</tr>
<tr>
<td>Duchesne County Water Conservancy District (Notice of Water Availability UBRP2)</td>
<td>1,500</td>
</tr>
<tr>
<td>DOI Water Management Improvement Program (Section 207)</td>
<td>0.00</td>
</tr>
<tr>
<td>CUP Project Water (Irrigation)</td>
<td>0.11724</td>
</tr>
<tr>
<td>Duchesne County Water Conservancy District (Block Notice UBRP1)</td>
<td>0.2,038</td>
</tr>
</tbody>
</table>

Deer Creek Reservoir

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Project Water (M&I)</td>
<td>0.98</td>
</tr>
<tr>
<td>Wasatch, Summit, and Utah Counties Exchange Contracts</td>
<td>1.857</td>
</tr>
</tbody>
</table>

Upper Provo Lakes (Trial, Washington, Lost)

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUP Project Water (Irrigation)</td>
<td>0.782</td>
</tr>
<tr>
<td>Washington Irrigation Company</td>
<td>0.1,084</td>
</tr>
<tr>
<td>Deer Creek Reservoir Exchanges</td>
<td>0.828</td>
</tr>
</tbody>
</table>

Wasatch County Water Efficiency Project

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUP Project Water (M&I)</td>
<td>0.499</td>
</tr>
<tr>
<td>CUP Project Water (Irrigation)</td>
<td>0.4,998</td>
</tr>
<tr>
<td>Non-Project Water (Irrigation)</td>
<td>0.17029</td>
</tr>
<tr>
<td>Daniels Replacement Project</td>
<td>0.2,649</td>
</tr>
</tbody>
</table>

1 All values are in acre-feet. Reporting period: November 1, 2014 - October 31, 2015, except for CUP Project Water (Instream Flows) reporting October 1, 2014 - September 30, 2015
2 Big Sand Wash Reservoir is operated by Moon Lake Water Users Association
3 Deer Creek Reservoir is a Provo River Project facility operated by Provo River Water Users Association

Central Utah Water Conservancy District
Jordanelle Reservoir - Olmsted/Alpine System

CUP Project Water (M&I)
- Jordan Valley Water Conservancy District: 39,130
- Metropolitan Water District of Salt Lake & Sandy: 20,000
- Metropolitan Water District of Orem: 7,050
- Lehi City: 1,671
- IM Flash Technologies: 550
- Cedar Hills: 787
- Lindon City: 849
- Highland City: 396
- American Fork City: 2,061
- Pleasant Grove City: 610
- Vineyard Town: 35
- DOI Water Management Improvement Program (Section 207): 20,517

Non-Project Water (M&I)
- Jordan Valley Water Conservancy District: 17,693
- Jordan Valley Water Conservancy District (Transfer): 2,921
- Metropolitan Water District of Salt Lake & Sandy: 5,288
- Metropolitan Water District of Salt Lake & Sandy (Transfer): 5,288
- Metropolitan Water District of Orem: 9,042
- Provo City: 1,748
- CUWCD - CWP: 6,758

Non-Project Water (Exchanges)
- Upper Provo Lakes: 4,389

Power
- Olmsted Hydropower Plant: 0
- Jordanelle Hydropower Plant: 202,419

Strawberry Reservoir

CUP Project Water (M&I)
- Uinta Basin Exchange Contracts: 1

CUP Project Water (Irrigation)
- South Utah County (Temporary Contracts): 14,758
- Upper Strawberry Flows (DRP): 2,837

CUP Project Water (Utah Lake/Other)
- Exchange Water to Utah Lake: 26,929
- Other Trans-Mountain Diversions: 0

CUP Project Water (Instream Flows)
- 2014 Carry-Over Releases: 0
- 2015 Carry-Over Releases: 39,115
- 2016 Allocation Releases: 10,026
- Dedicated Storage Releases: 0

Non-Project Water (Secondary Irrigation Systems)
- Lehi City (Temporary): 0
- Lehi City: 149
- Lindon City: 1,057
- Highland City: 1,304
- Pleasant Grove City: 3,731

Non-Project Water (Secondary Irrigation Systems)
- Lehi City (Temporary): 0
- Lehi City: 149
- Lindon City: 1,057
- Highland City: 1,304
- Pleasant Grove City: 3,731
CUP Operations

CUP operations encompass the regulation of water through CUP facilities by maximizing storage, optimizing diversions, minimizing flooding, enhancing recreation, and maintaining minimum stream flows.

The District not only manages water, but also the physical facilities through which it flows. Throughout the year, at all times and under all conditions, employees maintain the numerous CUP Facilities through cleaning, repairs, upgrades, and installations without interruption to water deliveries.
Our Mission

Our mission is to responsibly develop, conserve, and deliver water.

Our Values

Safety
This value is demonstrated through a mindset that fosters safe practices and products/services. We always think “SAFETY” before we act.

Integrity
This value is demonstrated by consistency and by being open and forthright in all interactions.

Quality
This value is demonstrated by a willingness to work hard and make the most of our time and resources and by being accountable and consistently meeting or exceeding standards and expectations.

People
This value is demonstrated by recognizing the value of the individual and creating a workplace that fosters trust, ownership, and a commitment to working cooperatively to resolve issues and accomplish goals.