Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message from the General Manager</td>
<td>1</td>
</tr>
<tr>
<td>Board of Trustees</td>
<td>2</td>
</tr>
<tr>
<td>Conservation</td>
<td>3</td>
</tr>
<tr>
<td>Central Utah Gardens</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Programs</td>
<td>6</td>
</tr>
<tr>
<td>June Sucker Recovery Implementation Program</td>
<td>8</td>
</tr>
<tr>
<td>Treatment Plant Operations</td>
<td>10</td>
</tr>
<tr>
<td>Water Quality</td>
<td>11</td>
</tr>
<tr>
<td>Utah Lake System</td>
<td>12</td>
</tr>
<tr>
<td>CWP</td>
<td>14</td>
</tr>
<tr>
<td>DACRWTP</td>
<td>16</td>
</tr>
<tr>
<td>Hydropower</td>
<td>18</td>
</tr>
<tr>
<td>Winter Snowpack</td>
<td>20</td>
</tr>
<tr>
<td>Spring Runoff</td>
<td>21</td>
</tr>
<tr>
<td>Water Deliveries</td>
<td>22</td>
</tr>
<tr>
<td>CUP Operation</td>
<td>24</td>
</tr>
</tbody>
</table>
After celebrating 50 years of District history in 2014, 2015 continued the historic trend in an exciting fashion. The Olmsted Power Plant, after having operated for over 111 years beginning in 1904, was decommissioned, with preservation plans in mind. This decision was made in anticipation of the new Olmsted Hydroelectric Project due for completion in 2018.

The Utah Valley Water Treatment Plant became the Don A. Christiansen Regional Water Treatment Plant during plant dedicatory services following a major, multi-year upgrade. And with the completion of the Provo River Flow Control Structure, the Central Utah Project’s Bonneville Unit can now convey water from Upper Stillwater Dam in the High Uinta Mountains to the Provo River, and eventually to Salt Lake County, while fulfilling multiple project purposes along the way.

These events, as well as many others, are making history fun to live. Thanks to all, for your historic contributions: past, present, and future.
Board of Trustees

The District is governed by a board of Trustees representing eight central Utah Counties. The Board of Trustees provides a check and balance between rural and urban representation. The appointed citizen board governs the affairs of the District and establishes policy.
Water conservation activities continued in 2015 with several ongoing outreach and education programs. The District continued its support for the Governor’s Water Conservation Team and its Slow-the-Flow media campaign. Water Checks were offered free-of-charge to District residents. Over $114,000 was spent on rebates for water-efficient irrigation products. These rebates were given to 730 households in the District’s service area. In addition, 19 grants were awarded on commercial properties for sprinkler system upgrades.

The Canyons School District Irrigation Training Program was funded by a grant provided by CUWCD. Eight high school students were employed and performed audits on School District properties. These students created new irrigation schedules based on the data they collected. As a result of this program, there was a savings of almost 600,000 gallons of water.

The District also participated in 11 different community festivals including the Utah Lake Festival, the Vernal City Pioneer Day Breakfast, the Highland City Fling Days Parade, and the Duchesne County Fair.
In 2015, the Gardens reached a record attendance of 8,438 people. Garden classes held during the off-season had an average attendance of 96 people per class. In addition, four children's classes were offered during the summer with a record average attending of 93 kids.

Garden tours were given throughout the year to 68 different groups including elementary students, high school groups, college classes, cub scouts, girl scouts, senior center groups, youth groups, and garden clubs.

Two comedy nights were also hosted in May and September with 302 people attending the activities. At each activity hosted by the Gardens a water conservation message is shared with the public.
Six summer concerts were offered at the gardens with a total attendance of 1,066.

The Gardens hosted the Water Festival in May to celebrate water. H2-Joe, the water droplet mascot, was there to greet visitors. The festival provided information about the District and the Gardens as well as fun activities for the whole family.

The annual Pumpkin Walk was another success for the Gardens this year with 1,941 people in attendance. The visitors participated in family activities and viewed the entries of the pumpkin carving contest.
Environmental Programs

Cultural Resources
Mitigation for the Wasatch County Water Efficiency Project

The District environmental staff, with the help of a consulting firm, produced a video of the development of irrigation water in Wasatch County. The story was told through local residents, past and present, with hands-on experience with the original canals. A brochure was also developed outlining the irrigation history of Wasatch County.

Diamond Fork River and Sixth Water Creek

A multi-year instream flow study on Diamond Fork River and Sixth Water Creek has been initiated by the District, along with the URMCC and the DOI CUPCA Office. The study will look for the ideal instream flow amount to best benefit the ecosystem and dynamics of Diamond Fork River and Sixth Water Creek. It has been determined that minimum instream flows will no longer be delivered from the Sixth Water Flow Control Structure during the non-irrigation season due to damage incurred to the valve system.
Orem Reach 2 Realignment

An environmental assessment was completed by the District staff that evaluated realigning the Utah Lake System Orem Reach 2 Pipeline. The proposed action was to realign Orem Reach 2 along the Olmsted Campus access road between the recently constructed Provo River Flow Control Structure and the new Olmsted Hydroelectric Power Plant (completion slated for 2018). The new alignment would provide the District the opportunity to generate additional electricity at the new Olmsted Power Plant. The realignment will be constructed within the historic Olmsted Campus which contains buildings and features over 100 years old.

Mitigation for Olmsted Hydroelectric Power Plant Replacement Project

Mitigation efforts for the adverse impacts to the historic Olmsted Hydroelectric Power Plant. Mitigation efforts in 2015 focused on recording the historic buildings on the campus using LiDAR technology. LiDAR uses images and digital points to recreate a digital replica of a feature, preserving history in true-to-life imagery. In the future, the District plans to make some of these LiDAR scans available for education purposes.
Non-Native and Sportfish Management

Invasive species pose a considerable threat to the recovery of the June sucker. In order to address this threat, the JSRIP continued the removal of carp from Utah Lake by removing over three million pounds during 2015. This effort brings the total removed since the project began in 2009 to just over 20 million pounds of carp. This effort has resulted in a reduction of carp density in the lake and water quality improvements that will improve habitat conditions for the June sucker.

The JSRIP also initiated a project to evaluate the potential impact of Northern pike, an invasive species illegally introduced to Utah Lake. The project will study Northern pike feeding habits in the lake and identify possible mechanisms for control of the species.

Habitat Development and Maintenance

In order to improve the survival of young June sucker, the JSRIP has sought out opportunities to implement habitat improvement projects along the lower reaches of Utah Lake tributaries. In 2015, the Final Environmental Impact Statement for the Provo River Delta Restoration Project was completed. This project will restore natural conditions at the interface between the Provo River and Utah Lake in order to provide the habitat needed to support the growth and survival of young June sucker.

Spawning June Sucker continue to show up in both the Provo River and Hobble Creek, indicating an overall increase in the size of the June sucker population. Studies are being implemented to evaluate the survival of suckers stocked into Utah Lake and find ways to improve survival rates in order to continue population increases towards recovery.
Water Management and Acquisition

To support June sucker spawning and survival, flows in both the Provo River and Hobble Creek were supplemented in 2015. Over 25,000 acre feet of water was delivered between the two tributaries so adult June sucker in Utah Lake could swim to suitable spawning areas to deposit eggs. The supplemental flows also helped to provide conditions suitable for the survival of the June sucker produced from these spawning adults.

Genetic Integrity and Augmentation

In the late 1990’s the June sucker population in Utah Lake was estimated to be less than 1,000 individuals. In order to increase the population size and aid recovery, the JSRIP has implemented a captive rearing and stocking program that has resulted in over 550,000 individual June sucker being stocked to Utah Lake. These suckers stocked to the lake, now show up in the spawning runs and contribute to the overall survival and growth of the species.
Treatment Plant Operations

The District’s three treatment plants each successfully met all operational and water quality goals, including the Partnership for Safe Water Program goals of combined effluent turbidity less than 0.10 NTU 100% of the time. Through ongoing water quality projects, plant staff seek to optimize plant performance, react effectively to changes in source water, safeguard from plant upsets, and meet the ever-changing water quality regulations.

Each plant utilizes a comprehensive maintenance program to safeguard each process from equipment failure that could lead to plant disruption or threaten water quality. Personnel at each plant also successfully completed significant repair/replacement projects during the year. Protecting public health through continuously delivering high-quality drinking water requires a well-trained and dedicated staff committed to total water quality.
Lead in drinking water made national headlines through much of last year due to the corrosion control issues in Flint, Michigan. Well before Flint was on the front page, the staff at the DACRWTP were taking a proactive approach to corrosion control as part of their efforts to deliver the highest quality drinking water. A model that calculates the corrosivity of the water in real-time has been integrated into the treatment plant control system. This model calculates what is called the Langlier Saturation Index, which takes into account several water quality parameters such as pH, temperature, calcium hardness, total dissolved solids, and alkalinity to determine what the optimum pH of the water should be in order to not be corrosive. The control system then automatically adjusts a chemical feed system to achieve the desired pH as the water leaves the plant. This real-time optimization of corrosion control is both innovative and proactive, and is why the District won’t be on the news for lead in drinking water.

This control strategy is especially important in light of the variability of the pH of the raw water that comes into the treatment plant. The pH in the Provo River varies significantly on a 24-hour cycle (diurnal swing) due to the activity of algae. Despite the constantly changing pH of the river, the water leaving the plant has a stable pH and is optimized for corrosion control.
The Utah Lake System (ULS) will convey water from Strawberry Reservoir in the Colorado River Basin via the Diamond Fork System to municipal water users in the Great Basin along the Wasatch Front in Salt Lake and Utah counties. The Utah Lake System will provide supplemental flows to streams for environmental purposes.

Half of the municipal water supply, 30,000 acre-feet, is contracted to two water agencies in Salt Lake County: Jordan Valley Water Conservancy District and Metropolitan Water District of Salt Lake and Sandy. The water for these entities will be delivered to existing aqueducts at the mouth of Provo Canyon that flow to water treatment plants in Salt Lake County. The remaining 30,000 acre-feet of municipal water is contracted to the South Utah Valley Municipal Water Association (SUVMWA), which is comprised of ten cities in south Utah County.

In the summer of 2015, the Spanish Fork Provo Reservoir Canal Pipeline was completed to the Provo Reservoir Aqueduct (PRA) at 800 North in Orem with initial test flow releases in July 2015. In October 2015, a construction contract was awarded for Orem Reach 2, which includes approximately a quarter mile of 60-inch welded steel pipeline that will convey water via the future reconstructed Olmsted power plant, penstock, and tunnel to the Jordan Aqueduct for delivery to water agencies in Salt Lake County. Orem Reach 2 is scheduled for completion in late 2016, with the final completed connection to allow deliveries into the Jordan Aqueduct sometime after 2018.
Two construction contracts on the Mapleton Springville Pipeline were completed or nearing completion in 2015. A construction contract for constructing a 6.7 MG, rectangular, concrete, regulating tank, known as the Mapleton Springville Regulating Tank, was completed in April 2015. The Mapleton Springville Pipeline – Phase 2 was nearing completion in 2015.

Work on the remaining features of the ULS includes the design and construction of the approximately 17-mile long Spanish Fork – Santaquin Pipeline. This Pipeline will have the capability to deliver CUP water to the remaining eight cities of the ten cities of south Utah County and two power generation plants in Diamond Fork Canyon. Design of the initial reach of the Spanish Fork Santaquin Pipeline, the Spanish Fork Reach, began in early 2016.
The Central Water Project began in earnest the transition from construction phase to operations phase in 2015. Potable water deliveries of 3,168 acre-feet marked the greatest amount of CWP water delivered to date and included first-time deliveries through the North Segment to Salt Lake County.

The project currently includes over 23 miles of pipelines, a 10-million-gallon reservoir, a pump station, 7 turnouts with connections to 6 customers, 2 completed wells, and 3 additional wells that will be equipped with pumps and well houses in the coming years.

Construction of chlorination facilities in Vineyard and Saratoga Springs are also underway. When completed, these facilities will help ensure the continued delivery of high-quality, reliable drinking water to northern Utah County and southern Salt Lake County for many years.

Water from CWP Well #11 received the “Best of Show” award at the AWWA Intermountain Section annual conference as the best tasting water in the state, making it eligible to compete at the national AWWA conference in 2016.
In the spring of 2015, the UVWTP started and commissioned the expansion of the North Flocculation Basins and the new North Sedimentation Building. The project also started up and commissioned both a new Ozone Facility and Sludge Handling Facilities.

In the summer of 2015, the project upgraded sludge removal equipment at the existing Filter Waste Washwater Reclamation Facility.

In the fall, structural and non-structural seismic hazard mitigation improvements were made to existing buildings and completed. In addition, site work was underway and the paving, landscaping, sidewalks, curb, and gutters were also completed.

In September, the plant received an award for “Best Surface Water” at the AWWA Intermountain Section Annual Conference.

Another highlight of the year was the dedication of the plant which was renamed to the “Don A. Christiansen Regional Water Treatment Plant” in October 2015.

Installation of substantial SCADA network upgrades were made including the door/card security access system and the surveillance cameras.
Hydropower

The District and Heber Light and Power Company (HL&P) formed a partnership in 2000 to develop the Jordanelle Hydroelectric Project. This project develops non-federal power at Jordanelle Reservoir, a Central Utah Project facility operated and maintained by the District. It is operated under a lease-of-power-privilege contract that the District and HL&P entered into with the United States Department of Interior (DOI). The District works closely with HL&P and DOI to make the project a continued success.

The District finances, owns, and operates the power generation plant. HL&P purchases all generation output for sale to its customers, and it constructs and maintains the associated power transmission and distribution facilities.

During 2015, a gross generation of 43,294.07 MWh was achieved—slightly above both last year’s generation and the average, long-term annual generation design estimate. Enough power and energy are developed by the Jordanelle Hydroelectric Project to supply the electrical energy needs of about 9,000 homes.

<table>
<thead>
<tr>
<th>Generations Output</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Energy, MWh</td>
<td>1,866.80</td>
<td>1,690.30</td>
<td>1,871.66</td>
<td>2,616.88</td>
<td>4,371.84</td>
<td>6,273.90</td>
<td>8,857.49</td>
<td>4,157.73</td>
<td>3,214.73</td>
<td>1,839.71</td>
<td>1,870.71</td>
<td>43,294.07</td>
<td></td>
</tr>
<tr>
<td>Generation Output</td>
<td>1,816.67</td>
<td>1,643.83</td>
<td>1,821.92</td>
<td>2,531.85</td>
<td>4,195.26</td>
<td>5,935.85</td>
<td>8,275.35</td>
<td>3,990.72</td>
<td>3,103.81</td>
<td>1,789.88</td>
<td>1,820.74</td>
<td>41,388.51</td>
<td></td>
</tr>
<tr>
<td>Net Energy, MWh</td>
<td>50.13</td>
<td>46.47</td>
<td>49.74</td>
<td>85.03</td>
<td>176.58</td>
<td>338.05</td>
<td>582.14</td>
<td>167.01</td>
<td>110.92</td>
<td>49.83</td>
<td>49.97</td>
<td>1,905.56</td>
<td></td>
</tr>
</tbody>
</table>

Jordanelle Dam Hydroelectric Project
2015 Energy Generation Summary
After a respectable, though below-average, 2014 snowpack season, the 2015 snowpack season followed with no promise of drought relief. Peak snowpack at the following Snotel sites, all monitored closely for District operations and informational purposes, ranged from 39% to 85% of normal.

<table>
<thead>
<tr>
<th>Snotel Site: Provo River/Utah Lake/Jordan River</th>
<th>Percent of Peak Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial Lake (9,992 FT)</td>
<td>67%</td>
</tr>
<tr>
<td>Snowbird (9,640 FT)</td>
<td>50%</td>
</tr>
<tr>
<td>Clear Creek #1 (8,908 FT)</td>
<td>56%</td>
</tr>
<tr>
<td>Beaver Divide (8,280 FT)</td>
<td>85%</td>
</tr>
<tr>
<td>Lookout Peak (8,200 FT)</td>
<td>65%</td>
</tr>
<tr>
<td>Timpanogos Divide (8,140 FT)</td>
<td>56%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Snotel Site: Sevier River</th>
<th>Percent of Peak Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box Creek (9,828 FT)</td>
<td>49%</td>
</tr>
<tr>
<td>Pickle Keg (9,600 FT)</td>
<td>78%</td>
</tr>
<tr>
<td>Mammoth-Cottonwood (8,727 FT)</td>
<td>60%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Snotel Site: Duchesne River</th>
<th>Percent of Peak Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakefork Basin (10,966 FT)</td>
<td>64%</td>
</tr>
<tr>
<td>Brown Duck (10,600 FT)</td>
<td>59%</td>
</tr>
<tr>
<td>Chepeta (10,592 FT)</td>
<td>51%</td>
</tr>
<tr>
<td>Strawberry Divide (8,123 FT)</td>
<td>68%</td>
</tr>
<tr>
<td>Indian Canyon (9,175 FT)</td>
<td>62%</td>
</tr>
<tr>
<td>Daniels-Strawberry (8,037 FT)</td>
<td>70%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Snotel Site: Green River</th>
<th>Percent of Peak Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trout Creek (9,518 FT)</td>
<td>44%</td>
</tr>
<tr>
<td>King’s Cabin (8,724 FT)</td>
<td>39%</td>
</tr>
</tbody>
</table>

\(^1\text{This value represents the peak annual snowpack amount in percent of the peak 30-year median snowpack value for each respective Snotel site.}\)
Spring runoff from melting snowpack was below average at all facilities, but record rains in May helped preserve reservoir storage. Three major facilities, Jordanelle Reservoir, Strawberry Reservoir, and Upper Stillwater Reservoir, had respective April-through-July runoff quantities of 63%, 26%, and 76% of average. The long-term storage facilities continued to provide consistent contract deliveries through drought periods as designed.

<table>
<thead>
<tr>
<th>Reservoir/Water Body</th>
<th>Filling Status at Peak Storage:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starvation Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Upper Stillwater Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Currant Creek Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Strawberry Reservoir</td>
<td>77%</td>
</tr>
<tr>
<td>Big Sand Wash Reservoir</td>
<td>Filled</td>
</tr>
<tr>
<td>Trial Lake</td>
<td>Filled</td>
</tr>
<tr>
<td>Washington Lake</td>
<td>Filled</td>
</tr>
<tr>
<td>Lost Lake</td>
<td>Filled</td>
</tr>
<tr>
<td>Jordanelle Reservoir</td>
<td>87%</td>
</tr>
<tr>
<td>Deer Creek Reservoir</td>
<td>99%</td>
</tr>
<tr>
<td>Utah Lake</td>
<td>3.35 Feet below Compromise</td>
</tr>
</tbody>
</table>

1Moon Lake Water Users Association Facility

2Provo River Water Users Association Facility
Water Deliveries

Starvation Reservoir
- **CUP Project Water (M&I)**
 - Uinta Basin Exchange Contracts: 89
 - Duchesne City: 27
 - East Duchesne Culinary Water Improvement District: 10
 - Duchesne County Upper Country Water Improvement District: 3
 - Johnson Water Improvement District: 24
 - Camperworld: 5
 - DOI Water Management Improvement Program (Section 207): 647
 - DOI Water Management Improvement Program (Rediverted “44,400”): 0

- **Non-Project Water (M&I)**
 - Duchesne City: 559
 - Johnson Water Improvement District: 1,345
 - Myton City: 160
 - Duchesne County Water Conservancy District: 18
 - East Duchesne Culinary Water Improvement District: 623

- **CUP Project Water (Irrigation)**
 - Block Notice No. 1: 4,372
 - Duchesne County Water Conservancy District (Block Notice1B): 771
 - MidviewExchange: 6,414

- **CUP Project Water (Replacement)**
 - Replacement Water for Project Operations: 17,815

Big Sand Wash Reservoir
- **CUP Project Water (M&I)**
 - Duchesne County Water Conservancy District (Notice of Water Availability UBRP2): 1,222
 - DOI Water Management Improvement Program (Section 207): 1,500

- **CUP Project Water (Irrigation)**
 - Duchesne County Water Conservancy District (Block Notice UBRP1): 2,261

Deer Creek Reservoir
- **Non-Project Water (M&I)**
 - Wasatch, Summit, and Utah Counties Exchange Contracts: 98

Upper Provo Lakes (Trial, Washington, Lost)
- **CUP Project Water (Irrigation)**
 - Summit County Irrigation Companies: 2,909

- **Non-Project Water (Irrigation)**
 - Washington Irrigation Company: 782
 - Deer Creek Reservoir Exchanges: 365
 - Exchange 400: 1,266

Wasatch County Water Efficiency Project
- **CUP Project Water (M&I)**: 380
- **CUP Project Water (Irrigation)**: 4,943
- **Non-Project Water (Irrigation)**: 18,185
- **Daniels Replacement Project**: 2,282
Jordanelle Reservoir - Olmsted/Alpine System

CUP Project Water (M&I)
- Jordanelle Reservoir - Olmsted/Alpine System: 48,484
- Jordan Valley Water Conservancy District: 19,541
- Metropolitan Water District of Salt Lake & Sandy: 6,885
- Metropolitan Water District of Orem: 1,652
- IM Flash Technologies: 550
- Cedar Hills: 662
- Lindon City: 884
- Highland City: 430
- American Fork City: 2,095
- Pleasant Grove City: 620
- Vineyard Town: 35
- DOI Water Management Improvement Program (Section 207): 16,861

Non-Project Water (M&I)
- Jordanelle Reservoir - Olmsted/Alpine System: 17,056
- Jordan Valley Water Conservancy District: 2,172
- Metropolitan Water District of Salt Lake & Sandy: 230
- Metropolitan Water District of Salt Lake & Sandy (Transfer): 129
- Metropolitan Water District of Orem: 10,597
- Provo City: 1,817
- CUWCD - CWP: 2,729

Non-Project Water
- Upper Provo Lakes (Exchanges): 4,389

Non-Project Water (Secondary Irrigation Systems)
- Lehi City (Temporary): 2,000
- Lehi City: 165
- Lindon City: 787
- Highland City: 2,072
- Pleasant Grove City: 3,194

Power
- Olmsted Hydropower Plant: 42,623
- Jordanelle Hydropower Plant: 190,190

Strawberry Reservoir

CUP Project Water (M&I)
- Uinta Basin Exchange Contracts: 1

CUP Project Water (Irrigation)
- South Utah County (Temporary Contracts): 14,758
- Upper Strawberry Flows (DRP): 2,900

CUP Project Water (Utah Lake/Other)
- Exchange Water to Utah Lake: 28,409

CUP Project Water (Instream Flows)
- 2013 Carry-Over Releases: 0
- 2014 Carry-Over Releases: 43,383
- 2015 Allocation Releases: 5,285
- Dedicated Storage Releases: 0

Non-Project Water (Irrigation)
- Strawberry Water Users Association: 63,264

1. All values are in acre-feet. Reporting period: November 1, 2014-October 31, 2015, except for CUP Project Water (Instream Flows) reporting October 1, 2014-September 30, 2015
2. Big Sand Wash Reservoir is operated by Moon Lake Water Users Association
3. Deer Creek Reservoir is a Provo River Project facility operated by Provo River Water Users Association
CUP operations encompass the regulation of water through CUP facilities by maximizing storage, optimizing diversions, minimizing flooding, enhancing recreation, and maintaining minimum stream flows.

The District not only manages water, but also the physical facilities through which it flows. Throughout the year, employees maintain the numerous CUP facilities through cleaning, repairs, upgrades, and installations without interruption to water deliveries.
Our Mission

Our mission is to develop, conserve, and deliver water.

Our Values

Safety
This value is demonstrated through a mindset that fosters safe practices and products/services. We always think “SAFETY” before we act.

Integrity
This value is demonstrated by consistency and by being open and forthright in all interactions.

Quality
This value is demonstrated by a willingness to work hard and make the most of our time and resources and by being accountable and consistently meeting or exceeding standards and expectations.

People
This value is demonstrated by recognizing the value of the individual and creating a workplace that fosters trust, ownership, and a commitment to working cooperatively to resolve issues and accomplish goals.